Pareto k parameter diagnostics#
Default Pareto k diagnostic plot from PSIS-LOO-CV to assess importance sampling reliability
import warnings
from arviz_base import load_arviz_data
from arviz_stats import loo
import arviz_plots as azp
azp.style.use("arviz-variat")
dt = load_arviz_data("rugby")
warnings.filterwarnings("ignore", "Estimated shape parameter.*greater than 0.70")
elpd_data = loo(dt, var_name="home_points", pointwise=True)
pc = azp.plot_khat(
elpd_data,
threshold=0.7,
visuals={"hlines": True, "bin_text": True},
backend="none", # change to preferred backend
)
pc.show()
See also
API Documentation: plot_khat
Other examples with plot_khat#
